Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220484, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38186272

RESUMEN

Metabolic cold adaptation, or Krogh's rule, is the controversial hypothesis that predicts a monotonically negative relationship between metabolic rate and environmental temperature for ectotherms living along thermal clines measured at a common temperature. Macrophysiological patterns consistent with Krogh's rule are not always evident in nature, and experimentally evolved responses to temperature have failed to replicate such patterns. Hence, temperature may not be the sole driver of observed variation in metabolic rate. We tested the hypothesis that temperature, as a driver of energy demand, interacts with nutrition, a driver of energy supply, to shape the evolution of metabolic rate to produce a pattern resembling Krogh's rule. To do this, we evolved replicate lines of Drosophila melanogaster at 18, 25 or 28°C on control, low-calorie or low-protein diets. Contrary to our prediction, we observed no effect of nutrition, alone or interacting with temperature, on adult female and male metabolic rates. Moreover, support for Krogh's rule was only in females at lower temperatures. We, therefore, hypothesize that observed variation in metabolic rate along environmental clines arises from the metabolic consequences of environment-specific life-history optimization, rather than because of the direct effect of temperature on metabolic rate. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Asunto(s)
Drosophila melanogaster , Estado Nutricional , Femenino , Masculino , Animales , Temperatura
2.
J Therm Biol ; 117: 103707, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37778091

RESUMEN

How the accelerating pace of global warming will affect animal populations depends on the effects of increasing temperature across the life cycle. Developing young are sensitive to environmental challenges, often with life-long consequences, but the risks of climate warming during this period are insufficiently understood. This may be due to limited insight into physiological sensitivity and the temperatures that represent a thermal challenge for young. Here we examined the physiological and behavioural effects of increasing temperatures by measuring metabolic rate, water loss, and heat dissipation behaviours between 25-45 °C in nestlings of a small free-living songbird of temperate SE-Australia, the superb fairy-wren. We found a high and relatively narrow thermoneutral zone from 33.1 to 42.3 °C, with metabolic rate increasing and all nestlings panting above this range. Evaporative water loss sharply increased above 33.5 °C; at the same temperature, nestlings changed their posture (extended their wings) to facilitate passive heat loss. However, at all temperatures measured, water loss was insufficient to dissipate metabolically produced heat, indicating poor cooling capabilities, which persisted even when individuals were panting. While nestlings are relatively tolerant to higher temperatures, with no evidence for hyperthermia at temperatures below 42 °C, they are at a high risk of dehydration even at lower temperatures, with limited ability to mitigate this. Thus, climate warming is likely to elevate the risk dehydration, which is concerning, since it is accompanied by drier conditions.


Asunto(s)
Pájaros Cantores , Humanos , Animales , Pájaros Cantores/fisiología , Deshidratación , Regulación de la Temperatura Corporal/fisiología , Temperatura Corporal/fisiología , Calor , Agua
3.
Glob Chang Biol ; 29(19): 5540-5551, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37560790

RESUMEN

By 2100, greenhouse gases are predicted to reduce ozone and cloud cover over the tropics causing increased exposure of organisms to harmful ultraviolet-B radiation (UVBR). UVBR damages DNA and is an important modulator of immune function and disease susceptibility in humans and other vertebrates. The effect of UVBR on invertebrate immune function is largely unknown, but UVBR together with ultraviolet-A radiation impairs an insect immune response that utilizes melanin, a pigment that also protects against UVBR-induced DNA damage. If UVBR weakens insect immunity, then it may make insect disease vectors more susceptible to infection with pathogens of socioeconomic and public health importance. In the tropics, where UVBR is predicted to increase, the mosquito-borne dengue virus (DENV), is prevalent and a growing threat to humans. We therefore examined the effect of UVBR on the mosquito Aedes aegypti, the primary vector for DENV, to better understand the potential implications of increased tropical UVBR for mosquito-borne disease risk. We found that exposure to a UVBR dose that caused significant larval mortality approximately doubled the probability that surviving females would become infected with DENV, despite this UVBR dose having no effect on the expression of an effector gene involved in antiviral immunity. We also found that females exposed to a lower UVBR dose were more likely to have low fecundity even though this UVBR dose had no effect on larval size or activity, pupal cuticular melanin content, or adult mass, metabolic rate, or flight capacity. We conclude that future increases in tropical UVBR associated with anthropogenic global change may have the benefit of reducing mosquito-borne disease risk for humans by reducing mosquito fitness, but this benefit may be eroded if it also makes mosquitoes more likely to be infected with deadly pathogens.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Humanos , Animales , Femenino , Virus del Dengue/genética , Virus del Dengue/metabolismo , Mosquitos Vectores , Melaninas/metabolismo , Aedes/genética , Aedes/metabolismo , Larva
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1884): 20220137, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37427479

RESUMEN

Thermal conditions in the developmental environment can substantially affect an individual's phenotype, particularly in egg-laying ectotherms. However, whether these effects persist into adulthood is rarely examined. To investigate this, we incubated delicate skink, Lampropholis delicata, eggs at either cool (22°C), mild (26°C) or hot (30°C) temperatures. After hatching, we measured growth, thermal performance curves of locomotor activity, and thermal sensitivity of resting metabolic rate of offspring as juveniles (4-6 weeks of age), sub-adults (approx. 200 days of age), and adults (approx. 2 years of age), and then measured developmental temperature impacts on male fertility. Incubation temperature had a lasting effect on growth and locomotor performance, with cool and hot incubation temperatures resulting in faster growth and larger maximum size, and hot incubation temperatures reducing locomotor performance at all timepoints. Effects on resting metabolic rate were only present in sub-adults, with a higher metabolic rate at high and average body mass and negative metabolic scaling exponent in cool-incubated lizards. Additionally, cool and hot incubation treatments resulted in shorter sperm midpieces and heads. Incubation temperature did not affect testis mass or sperm count. Overall, our results demonstrate that incubation temperature can have lasting effects on later life stages, highlighting the importance of maternal nest-site selection, but that some effects are age dependent. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.


Asunto(s)
Lagartos , Semen , Animales , Masculino , Temperatura , Calor , Locomoción
5.
Aquat Toxicol ; 260: 106577, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37207487

RESUMEN

Endocrine-disrupting chemicals-compounds that directly interfere with the endocrine system of exposed animals-are insidious environmental pollutants that can disrupt hormone function, even at very low concentrations. The dramatic impacts that some endocrine-disrupting chemicals can have on the reproductive development of wildlife are well documented. However, the potential of endocrine-disrupting chemicals to disrupt animal behaviour has received far less attention, despite the important links between behavioural processes and population-level fitness. Accordingly, we investigated the impacts of 14 and 21-day exposure to two environmentally realistic levels of 17ß-trenbolone (4.6 and 11.2 ng/L), a potent endocrine-disrupting steroid and agricultural pollutant, on growth and behaviour in tadpoles of an anuran amphibian, the southern brown tree frog (Litoria ewingii). We found that 17ß-trenbolone altered morphology, baseline activity and responses to a predatory threat, but did not affect anxiety-like behaviours in a scototaxis assay. Specifically, we found that tadpoles exposed to our high-17ß-trenbolone treatment were significantly longer and heavier at 14 and 21 days. We also found that tadpoles exposed to 17ß-trenbolone showed higher levels of baseline activity, and significantly reduced their activity following a simulated predator strike. These results provide insights into the wider repercussions of agricultural pollutants on key developmental and behavioural traits in aquatic species, and demonstrate the importance of behavioural studies in the ecotoxicological field.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Acetato de Trembolona , Larva , Contaminantes Químicos del Agua/toxicidad , Anuros
6.
Science ; 380(6643): eadf5188, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104584

RESUMEN

Froese and Pauly argue that our model is contradicted by the observation that fish reproduce before their growth rate decreases. Kearney and Jusup show that our model incompletely describes growth and reproduction for some species. Here we discuss the costs of reproduction, the relationship between reproduction and growth, and propose tests of models based on optimality and constraint.


Asunto(s)
Perciformes , Reproducción , Animales , Modelos Biológicos , Perciformes/anatomía & histología , Perciformes/crecimiento & desarrollo
7.
Chemosphere ; 326: 138446, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36940830

RESUMEN

Pharmaceutical pollution is a major driver of global change, with the capacity to alter key behavioural and physiological traits in exposed animals. Antidepressants are among the most commonly detected pharmaceuticals in the environment. Despite well-documented pharmacological effects of antidepressants on sleep in humans and other vertebrates, very little is known about their ecologically relevant impacts as pollutants on non-target wildlife. Accordingly, we investigated the effects of acute 3-day exposure of eastern mosquitofish (Gambusia holbrooki) to field-realistic levels (nominal concentrations: 30 and 300 ng/L) of the widespread psychoactive pollutant, fluoxetine, on diurnal activity patterns and restfulness, as indicators of disruptions to sleep. We show that exposure to fluoxetine disrupted diel activity patterns, which was driven by augmentation of daytime inactivity. Specifically, unexposed control fish were markedly diurnal, swimming farther during the day and exhibiting longer periods and more bouts of inactivity at night. However, in fluoxetine-exposed fish, this natural diel rhythm was eroded, with no differences in activity or restfulness observed between the day and night. As a misalignment in the circadian rhythm has been shown to adversely affect fecundity and lifespan in animals, our findings reveal a potentially serious threat to the survival and reproductive success of pollutant-exposed wildlife.


Asunto(s)
Ciprinodontiformes , Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Humanos , Fluoxetina/toxicidad , Antidepresivos , Ciprinodontiformes/fisiología , Ritmo Circadiano , Animales Salvajes , Contaminantes Químicos del Agua/toxicidad
8.
Aquat Toxicol ; 251: 106289, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36087492

RESUMEN

Pollutants, such as endocrine disrupting chemicals (EDCs), are increasingly being detected in organisms and ecosystems globally. Agricultural activities, including the use of hormonal growth promotants (HGPs), are a major source of EDC contamination. One potent EDC that enters into the environment through the use of HGPs is 17ß-trenbolone. Despite EDCs being repeatedly shown to affect reproduction and development, comparatively little is known regarding their effects on behaviour. Amphibians, one of the most imperilled vertebrate taxa globally, are at particular risk of exposure to such pollutants as they often live and breed near agricultural operations. Yet, no previous research on amphibians has explored the effects of 17ß-trenbolone exposure on foraging or antipredator behaviour, both of which are key fitness-related behavioural traits. Accordingly, we investigated the impacts of 28-day exposure to two environmentally realistic concentrations of 17ß-trenbolone (average measured concentrations: 10 and 66 ng/L) on the behaviour and growth of spotted marsh frog tadpoles (Limnodynastes tasmaniensis). Contrary to our predictions, there was no significant effect of 17ß-trenbolone exposure on tadpole growth, antipredator response, anxiety-like behaviour, or foraging. We hypothesise that the differences in effects found between this study and those conducted on fish may be due to taxonomic differences and/or the life stage of the animals used, and suggest further research is needed to investigate the potential for delayed manifestation of the effects of 17ß-trenbolone exposure.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Anuros , Ecosistema , Disruptores Endocrinos/toxicidad , Larva , Acetato de Trembolona , Contaminantes Químicos del Agua/toxicidad
9.
Science ; 377(6608): 834-839, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35981018

RESUMEN

Organisms use energy to grow and reproduce, so the processes of energy metabolism and biological production should be tightly bound. On the basis of this tenet, we developed and tested a new theory that predicts the relationships among three fundamental aspects of life: metabolic rate, growth, and reproduction. We show that the optimization of these processes yields the observed allometries of metazoan life, particularly metabolic scaling. We conclude that metabolism, growth, and reproduction are inextricably linked; that together they determine fitness; and, in contrast to longstanding dogma, that no single component drives another. Our model predicts that anthropogenic change will cause animals to evolve decreased scaling exponents of metabolism, increased growth rates, and reduced lifetime reproductive outputs, with worrying consequences for the replenishment of future populations.


Asunto(s)
Metabolismo Energético , Crecimiento y Desarrollo , Modelos Biológicos , Reproducción , Animales
10.
Biol Rev Camb Philos Soc ; 97(4): 1346-1364, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35233915

RESUMEN

Animal behaviour is remarkably sensitive to disruption by chemical pollution, with widespread implications for ecological and evolutionary processes in contaminated wildlife populations. However, conventional approaches applied to study the impacts of chemical pollutants on wildlife behaviour seldom address the complexity of natural environments in which contamination occurs. The aim of this review is to guide the rapidly developing field of behavioural ecotoxicology towards increased environmental realism, ecological complexity, and mechanistic understanding. We identify research areas in ecology that to date have been largely overlooked within behavioural ecotoxicology but which promise to yield valuable insights, including within- and among-individual variation, social networks and collective behaviour, and multi-stressor interactions. Further, we feature methodological and technological innovations that enable the collection of data on pollutant-induced behavioural changes at an unprecedented resolution and scale in the laboratory and the field. In an era of rapid environmental change, there is an urgent need to advance our understanding of the real-world impacts of chemical pollution on wildlife behaviour. This review therefore provides a roadmap of the major outstanding questions in behavioural ecotoxicology and highlights the need for increased cross-talk with other disciplines in order to find the answers.


Asunto(s)
Animales Salvajes , Ecotoxicología , Animales , Conducta Animal , Evolución Biológica , Ambiente
11.
Environ Pollut ; 299: 118870, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065139

RESUMEN

Globally, amphibian species are experiencing dramatic population declines, and many face the risk of imminent extinction. Endocrine-disrupting chemicals (EDCs) have been recognised as an underappreciated factor contributing to global amphibian declines. In this regard, the use of hormonal growth promotants in the livestock industry provides a direct pathway for EDCs to enter the environment-including the potent anabolic steroid 17ß-trenbolone. Emerging evidence suggests that 17ß-trenbolone can impact traits related to metabolism, somatic growth, and behaviour in non-target species. However, far less is known about possible effects of 17ß-trenbolone on anuran species, particularly during early life stages. Accordingly, in the present study we investigated the effects of 28-day exposure to 17ß-trenbolone (mean measured concentrations: 10 and 66 ng/L) on body size, body condition, metabolic rate, and anxiety-related behaviour of tadpoles (Limnodynastes tasmaniensis). Specifically, we measured rates of O2 consumption of individual tadpoles as a proxy for metabolic rate and quantified their swimming activity and their time spent in the upper half of the water column as indicators of anxiety-related behaviour. Counter to our predictions based on effects observed in other taxa, we detected no effect of 17ß-trenbolone on body size, metabolic rate, or behaviour of tadpoles; although, we did detect a subtle, but statistically significant decrease in body condition at the highest 17ß-trenbolone concentration. We hypothesise that 17ß-trenbolone may induce taxa-specific effects on metabolic function, growth, and anxiety-related behaviour, with anurans being less sensitive to disruption than fish, and encourage further cross-taxa investigation to test this hypothesis.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Andrógenos/farmacología , Animales , Larva , Acetato de Trembolona/toxicidad , Contaminantes Químicos del Agua/toxicidad
12.
Oecologia ; 198(3): 567-578, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34725729

RESUMEN

Physiology is crucial for the survival of invasive species in new environments. Yet, new climatic conditions and the limited genetic variation found within many invasive populations may influence physiological responses to new environmental conditions. Here, we studied the case of the delicate skinks (Lampropholis delicata) invading Lord Howe Island (LHI), Australia. On LHI, the climate is different from the mainland source of the skinks, and independent introduction events generated invasive populations with distinct genetic backgrounds. To understand how climate and genetic background may shape physiological responses along biological invasions, we compared the physiological traits of a source and two invasive (single-haplotype and multi-haplotype) populations of the delicate skink. For each population, we quantified physiological traits related to metabolism, sprint speed, and thermal physiology. We found that, for most physiological traits analysed, population history did not influence the ecophysiology of delicate skinks. However, invasive populations showed higher maximum speed than the source population, which indicates that locomotor performance might be a trait under selection during biological invasions. As well, the invasive population with a single haplotype was less cold-tolerant than the multi-haplotype and source populations. Our results suggest that limited genetic variability and climate may influence physiological responses of invasive organisms in novel environments. Incorporating the interplay between genetic and physiological responses into models predicting species invasions can result in more accurate understanding of the potential habitats those species can occupy.


Asunto(s)
Lagartos , Animales , Australia , Ecosistema , Especies Introducidas , Lagartos/fisiología , Fenotipo
13.
J Exp Biol ; 224(Pt 1)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33257439

RESUMEN

Anthropogenic climate change and invasive species are two of the greatest threats to biodiversity, affecting the survival, fitness and distribution of many species around the globe. Invasive species are often expected to have broad thermal tolerance, be highly plastic, or have high adaptive potential when faced with novel environments. Tropical island ectotherms are expected to be vulnerable to climate change as they often have narrow thermal tolerance and limited plasticity. In Fiji, only one species of endemic bee, Homalictus fijiensis, is commonly found in the lowland regions, but two invasive bee species, Braunsapis puangensis and Ceratina dentipes, have recently been introduced into Fiji. These introduced species pollinate invasive plants and might compete with H. fijiensis and other native pollinators for resources. To test whether certain performance traits promote invasiveness of some species, and to determine which species are the most vulnerable to climate change, we compared the thermal tolerance, desiccation resistance, metabolic rate and seasonal performance adjustments of endemic and invasive bees in Fiji. The two invasive species tended to be more resistant to thermal and desiccation stress than H. fijiensis, while H. fijiensis had greater capacity to adjust their CTmax with season, and H. fijiensis females tended to have higher metabolic rates than B. puangensis females. These findings provide mixed support for current hypotheses for the functional basis of the success of invasive species; however, we expect the invasive bees in Fiji to be more resilient to climate change because of their increased thermal tolerance and desiccation resistance.


Asunto(s)
Cambio Climático , Especies Introducidas , Animales , Abejas , Biodiversidad , Femenino , Fiji , Islas
14.
Glob Chang Biol ; 26(3): 1225-1234, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31518484

RESUMEN

Ultraviolet B radiation (UVBR) damages the DNA of exposed cells, causing dimers to form between adjacent pyrimidine nucleotides. These dimers block DNA replication, causing mutations and apoptosis. Most organisms utilize biochemical or biophysical DNA repair strategies to restore DNA structure; however, as with most biological reactions, these processes are likely to be thermally sensitive. Tadpoles exposed to elevated UVBR at low environmental temperatures have significantly higher rates of mortality and developmental deformities compared with tadpoles exposed to the same levels of UVBR at higher environmental temperatures. We hypothesized that low environmental temperatures impair the primary enzymatic (photolyase) DNA repair pathway in amphibians, leading to the accumulation of DNA damage. To test this hypothesis, we compared DNA repair rates and photolyase gene expression patterns in Limnodynastes peronii. Tadpoles were acutely exposed to UVBR for 1 hr at either 20 or 30°C, and we measured DNA damage and photolyase expression levels at intervals following this exposure. Temperature had a significant effect on the rate of DNA repair, with repair at 30°C occurring twice as fast as repair at 20°C. Photolyase gene expression (6-4 PP and CPD) was significantly upregulated by UVBR exposure, with expression levels increasing within 6 hr of UVBR exposure. CPD expression levels were not significantly affected by temperature, but 6-4 PP expression was significantly higher in tadpoles in the 30°C treatment within 12 hr of UVBR exposure. These data support the hypothesis that DNA repair rates are thermally sensitive in tadpoles and may explain why enigmatic amphibian declines are higher in montane regions where UVBR levels are naturally elevated and environmental temperatures are lower.


Asunto(s)
Altitud , Rayos Ultravioleta , Animales , Daño del ADN , Larva , Temperatura
15.
Nat Ecol Evol ; 3(4): 598-603, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30886370

RESUMEN

Organisms vary widely in size, from microbes weighing 0.1 pg to trees weighing thousands of megagrams - a 1021-fold range similar to the difference in mass between an elephant and the Earth. Mass has a pervasive influence on biological processes, but the effect is usually non-proportional; for example, a tenfold increase in mass is typically accompanied by just a four- to sevenfold increase in metabolic rate. Understanding the cause of allometric scaling has been a long-standing problem in biology. Here, we examine the evolution of metabolic allometry in animals by linking microevolutionary processes to macroevolutionary patterns. We show that the genetic correlation between mass and metabolic rate is strong and positive in insects, birds and mammals. We then use these data to simulate the macroevolution of mass and metabolic rate, and show that the interspecific relationship between these traits in animals is consistent with evolution under persistent multivariate selection on mass and metabolic rate over long periods of time.


Asunto(s)
Metabolismo Basal , Evolución Biológica , Tamaño Corporal , Animales , Aves , Insectos , Mamíferos , Modelos Biológicos , Fenotipo
16.
Evolution ; 71(1): 145-152, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27757954

RESUMEN

The effect of temperature on the evolution of metabolism has been the subject of debate for a century; however, no consistent patterns have emerged from comparisons of metabolic rate within and among species living at different temperatures. We used experimental evolution to determine how metabolism evolves in populations of Drosophila melanogaster exposed to one of three selective treatments: a constant 16°C, a constant 25°C, or temporal fluctuations between 16 and 25°C. We tested August Krogh's controversial hypothesis that colder environments select for a faster metabolism. Given that colder environments also experience greater seasonality, we also tested the hypothesis that temporal variation in temperature may be the factor that selects for a faster metabolism. We measured the metabolic rate of flies from each selective treatment at 16, 20.5, and 25°C. Although metabolism was faster at higher temperatures, flies from the selective treatments had similar metabolic rates at each measurement temperature. Based on variation among genotypes within populations, heritable variation in metabolism was likely sufficient for adaptation to occur. We conclude that colder or seasonal environments do not necessarily select for a faster metabolism. Rather, other factors besides temperature likely contribute to patterns of metabolic rate over thermal clines in nature.


Asunto(s)
Evolución Biológica , Frío , Drosophila melanogaster/fisiología , Metabolismo Energético , Animales , Drosophila melanogaster/genética , Variación Genética
17.
Ecol Evol ; 6(18): 6712-6720, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27777742

RESUMEN

The energetic costs for animals to locomote on land influence many aspects of their ecology. Size accounts for much of the among-species variation in terrestrial transport costs, but species of similar body size can still exhibit severalfold differences in energy expenditure. We compiled measurements of the (mass-specific) minimum cost of pedestrian transport (COTmin, mL/kg/m) for 201 species - by far the largest sample to date - and used phylogenetically informed comparative analyses to investigate possible eco-evolutionary differences in COTmin between various groupings of those species. We investigated number of legs, ectothermy and endothermy, waddling, and nocturnality specifically in lizards. Thus, our study primarily revisited previous theories about variations in COTmin between species, testing them with much more robust analyses. Having accounted for mass, while residual COTmin did not differ between bipedal and other species, specifically waddling bipeds were found to have relatively high COTmin. Furthermore, nocturnal lizards have relatively low COTmin although temperature does not appear to affect COTmin in ectotherms. Previous studies examining across-species variation in COTmin from a biomechanical perspective show that the differences between waddling birds and nonwaddling species, and between nocturnal lizards and other ecotherms, are likely to be attributable to differences in ground reaction forces, posture, and effective limb length.

18.
J Comp Physiol B ; 186(1): 123-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26476526

RESUMEN

Many of the far-reaching impacts of climate change on ecosystem function will be due to alterations in species interactions. However, our understanding of the effects of temperature on the dynamics of interactions between species is largely inadequate. Inducible defences persist in prey populations because defensive traits increase survival in the presence of predators but are costly when they are absent. Large-scale changes in the thermal climate are likely to alter the costs or benefits of these defences for ectotherms, whose physiological processes are driven by environmental temperature. A shift in costs of defensive traits would affect not only predator-prey interactions, but also the strength of selection for inducible defences in natural populations. We investigate the effect of temperature on the costs of behavioural defences in larvae of the marine toad, Rhinella marinus. Larvae were reared in the presence or absence of predator cues at both 25 and 30 °C. When exposed to predation cues, larvae reduced activity and spent less time feeding. Exposure to predation cues also reduced metabolic rate, presumably as a by-product of reducing activity levels. Larvae exposed to predation cues also grew more slowly, were smaller at metamorphosis and were poorer jumpers after metamorphosis--three traits associated with fitness in post-metamorphic anurans. We found that the costs of behavioural defences, in terms of larval growth, post-metamorphic size and jumping performance, were exacerbated at cooler temperatures. The thermal sensitivity of costs associated with defensive traits may explain geographic variation in plasticity of defensive traits in other species and suggests that changes in environmental temperature associated with climate change may affect predator-prey interactions in subtle ways not previously considered.


Asunto(s)
Adaptación Fisiológica/fisiología , Conducta Animal/fisiología , Bufo marinus/fisiología , Calor , Animales , Tamaño Corporal , Cambio Climático , Proteínas de Unión al ADN , Proteínas de Escherichia coli , Larva/crecimiento & desarrollo
19.
J Exp Biol ; 218(Pt 15): 2416-26, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26056244

RESUMEN

Burrowing is an important form of locomotion in reptiles, but no study has examined the energetic cost of burrowing for reptiles. This is significant because burrowing is the most energetically expensive mode of locomotion undertaken by animals and many burrowing species therefore show specialisations for their subterranean lifestyle. We examined the effect of temperature and substrate characteristics (coarse sand or fine sand) on the net energetic cost of burrowing (NCOB) and burrowing rate in two species of the Egernia group of skinks (Liopholis striata and Liopholis inornata) compared with other burrowing animals. We further tested for morphological specialisations among burrowing species by comparing the relationship between body shape and retreat preference in Egernia group skinks. For L. striata and L. inornata, NCOB is 350 times more expensive than the predicted cost of pedestrian terrestrial locomotion. Temperature had a positive effect on burrowing rate for both species, and a negative effect on NCOB for L. striata but not L. inornata. Both NCOB and burrowing rate were independent of substrate type. Burrows constructed by skinks had a smaller cross-sectional area than those constructed by mammals of comparable mass, and NCOB of skinks was lower than that of mammals of similar mass. After accounting for body size, retreat preference was significantly correlated with body shape in Egernia group skinks. Species of Egernia group skinks that use burrows for retreats have narrower bodies and shorter front limbs than other species. We conclude that the morphological specialisations of burrowing skinks allow them to construct relatively narrow burrows, thereby reducing NCOB and the total cost of constructing their burrow retreats.


Asunto(s)
Lagartos/anatomía & histología , Lagartos/fisiología , Temperatura , Animales , Conducta Animal , Pesos y Medidas Corporales , Metabolismo Energético , Locomoción , Suelo
20.
Conserv Physiol ; 3(1): cov010, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27293695

RESUMEN

Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...